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Summary. Effects of data imbalance on bias, sampling
variance and mean square error of heritability
estimated with variance components were examined
using a random two-way nested classification. Four
designs, ranging from zero imbalance (balanced data)
to “low”, “medium” and “high” imbalance, were
considered for each of four combinations of heri-
tability (h?=0.2 and 0.4) and sample size (N = 120
and 600). Observations were simulated for each design
by drawing independent pseudo-random deviates from
normal distributions with zero means, and variances
determined by heritability. There were 100 replicates
of each simulation; the same design matrix was used in
all replications. Variance components were estimated
by analysis of variance (Henderson’s Method 1) and by
maximum likelihood (ML). For the design and model
used in this study, bias in heritability based on
Method | and ML estimates of variance components
was negligible. Effect of imbalance on variance of
heritability was smaller for ML than for Method 1
estimation, and was smaller for heritability based on
estimates of sire-plus-dam variance components than
for heritability based on estimates of sire or dam
variance components. Mean square error for heri-
tability based on estimates of sire-plus-dam variance
components appears to be less sensitive to data
imbalance than heritability based on estimates of sire
or dam variance components, especially when using
Method 1 estimation. Estimation of heritability from
sire-plus-dam components was insensitive to differ-
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ences in data imbalance, especially for the larger
sample size.
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Introduction

Heritability, the proportion of phenotypic variance
associated with variance among additive genetic ef-
fects, is needed in devising efficient selection programs.
Heritability can be estimated from experimental or
field data as the ratio of estimated components of
additive genetic variance and phenotypic variance
using analysis of variance techniques, on the assump-
tion of a mixed linear model. Numbers of observations
in subclasses are commonly unequal (unbalanced
data), to a greater extent in field data than in experi-
mental data.

Traditional methods to estimate variance components
with unbalanced data have been Methods 1, 2 and 3 (Hender-
son 1953). These methods are translation invariant quadratic
unbiased estimators. More recently, other methods such as
minimum variance quadratic unbiased estimation (MIVQUE),
maximum likelihood (ML) and restricted maximum likeli-
hood (REML) have become available (see Searle 1979).

One question of interest in genetics is to what extent data
imbalance affects bias, sampling variance and mean square
error (MSE) of estimates of variance components and heri-
tability. Data imbalance will result from selection. Harville
(1968) examined biases in variance components estimated by
Methods 1 and 3 with unbalanced data for a two-way random-
effects model with interaction. He modeled a selection process
not independent of some of the unobservable random effects;
thus subclass numbers were random and associated with these
random effects. Expected values of estimators were insensitive
to number of levels of the effects and expected value of
subclass numbers. Under certain conditions, Method 3 estima-
tors were less biased than Method 1.
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Rothschild etal. (1979) investigated effects of data im-
balance on variance and covariance components estimated by
Method 1 and ML, and on heritability and correlation esti-
mates, for a two-trait, one-way random model. Fifty percent
of the data on trait two was selected randomly or by truncation
on trait one. Subclass numbers for trait one were fixed,
whereas for trait 2 they were random variables, independent
of other random variables in the model (random selection) or
associated with trait 1 (truncation selection). Method 1 and
ML estimates had similar MSE when data were selected at
random. With truncation selection, however, Method 1 esti-
mates had higher MSE than ML.

Corbeil and Searle (1976) compared variance component
estimators for balanced and unbalanced data with a two-way
mixed model with no interaction. In comparisons for un-
balanced data, subclass numbers were either zero or one
observation per cell with 10, 30 or 60% of cells empty, and
were not associated with variables in the model. ML had
greater efficiency under the range of experimental conditions.

This study examined effects of data imbalance on
variance components estimated by Method 1 and ML,
and on heritability estimates, for a random two-way
nested classification. Four designs with increasing
levels of data imbalance due to random loss of observa-
tions from an optimally structured experiment were
considered. Each design had fixed subclass numbers;
thus they were not associated with random variables in
the model.

The model and the designs

In a two-way nested classification, observations are assumed
to follow the random linear model:

Pijk =u + Si + DU + Eijk

where P;;, is the observation for progeny k of dam j mated to
sire i, u 1s a fixed effect common to all observations, S; is the
effect of sire i, D;; is the effect of dam j mated to sire i, and
E;jx isaresidual associated with progeny k of dam j mated to sire
i. There arei=1,..., s sires; j=1,..., d; dams per sire i, and
k=1,...,n; progeny per dam ij. Also, 3, d;=d., the total
number of dams; 3 n;; = n;, the number of progeny of sire i;
and ). n;;= N, the total number of progeny. In the case of
equal numbers of observations in the subclasses, d;=d and
n;j=n Effects §;, D;; and Ejj; are assumed to be mutually
uncorrelated random variables with zero means and variances
0%, of and 6, so that 0§ = 0§ + of + o.

Four designs, ranging in imbalance from zero (balanced
data or equal subclass numbers) to “low”, “medium”, and
“high” imbalance were used for each of four combinations of
heritability (h2=0.2 and 0.4) and sample size (N = 120 and
600). The balanced designs were chosen to have optimum
structure so as to estimate heritability from both sire and dam
components with approximate minimum variance. Below is
the optimal number of sires (s), dams per sire (d =2) and
progeny per dam (n) for each balanced design, for combina-
tions of h? and N (Grossman and Norton 1981).

The three unbalanced designs were chosen from among 20
designs generated at random. Numbers of sires and of dams
per sire in the random designs were fixed and were the same
as for the balanced design, for each combination of h? and N.
The number of progeny per dam, however, were generated

Heritability (h?)  Balanced structure Total no. progeny (N)
120 600
0.2 s 10 30
d 2 2
n 6 10
0.4 ] 15 75
d 2 2
n 4 4

using a Poisson pseudo-random number generator (subroutine
GGPOS, International Mathematics and Statistics Library).

Numbers of progeny per dam were assumed to follow a
Poisson distribution, if each dam had the same probability of
producing progeny (Cavalli-Sforza and Bodmer 1971). A
random variable x has a Poisson distribution if its probability
density function is of the form

f(x, )=re?x!, for x=0,1,2,...; and i>0;

where e is the base of natural logarithms. The mean and the
variance of the Poisson distribution are each equal to A. In this
study, 4 is taken to be the number of progeny per dam (n;;,
dam-family size) given by the balanced design for each
combination of h? and N. The number of dam families (2 s),
and the mean and variance of dam-family size (1) are sum-
marized below:

h? N No.of dam  Mean and variance
families (2s) of dam-family size (1)
0.2 120 20 6
600 60 10
04 120 30 4
600 150 4

To quantify the degree of imbalance, the coefficient of
variation (CV) of dam-family size (the n;;’s) was chosen as:

CV (myj) = 100 6,/

where /1, and &2 are estimates of the mean and the variance of
dam-family size. Designs that are more unbalanced have
larger coefficients of variation for dam-family size. Within
each combination of h? and N, larger CV(n, j)’s have larger
estimated variance of dam-family size, the “estimated” mean
dam-family size being the same and equal to 4.

Because of unequal numbers of progeny among dam
families, sire family sizes will usually be unequal. Imbalance
among sire families was measured by CV (ni)= 100 &/2 fin, the
coefficient of variation of sire-family size, where o2 is the
estimate of the variance of sire-family size.

For each combination of h? and N, the design with lowest
CV(n;j), from among the 20 designs randomly generated,
represented “low” imbalance; the design with the highest
CV(n;;), “high” imbalance; and a design with intermediate
CV{(n;;), “medium” imbalance.

Bias, sampling variance and mean square error of heri-
tability estimated by a ratio of variance component estimates
could not be calculated directly, with unbalanced data, and
therefore were estimated by computer simulation. Observa-
tions were simulated for each design by drawing independent
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Table 1. Analysis of variance for estimating heritabilities
from unbalanced data

Source df MS E (MS)
Sires (S) s—1 S of + ks of + k; 0§
Dams D)/S ¥ (d;— 1) D ot +k, B
Progeny/D/S X% (n;—1) E ot
i
I (X nj

K= N3

Y- r

1 (Zj: nf) ¥ ZJ: nf;

k= A

2 s—1 Zl“ n; N

[ o=m
k3= N—'l_—
s—1 N

pseudo-random deviates from normal distributions with zero
means, and with variances determined by heritability. There
were 100 replications of each simulation; the same design
matrix was used in all replications. Variance components were
estimated by analysis of variance (Method 1, Henderson 1953)
and by maximum likelihood (ML), using PROC NESTED
and PROC VARCOMP in SAS®! (SAS Institute Inc. 1982),
respectively.

Estimates of variance components by Method 1 were
computed by equating each mean square to its expected value
and solving the resulting system of equations for the variance
components. From the analysis of variance in Table 1,

6% =E,

é5=(D-E)k,,

6% =[k;S—k, D+ (k, — k) EVk ks,

6p =04+ 6B+ 6F.

For equal numbers of progeny per dam (n;; = n) and dams per
sire (d;=d), the coefficients for variance components are
ki=ky=nandk;=nd.

Variances and covariances of the variance components
were computed according to Searle (1971). These analytical
variances and covariances are referred to in this study as
parameter values to distinguish them from estimated vari-
ances and covariances from simulated observations.

Three estimates of heritability were obtained (Falconer
1981): from the sire component of variance, h3 =4 53/6%;
from the dam component, h =4 43/63; and from the sire-
plus-dam components, hi,p =2 (83 + 83)/63 = (h§ + h3)/2.
Assuming only additive genetic effects, o§ = g4 = 0%/4, where
oz is the additive genetic variance. For traits showing non-
additive genetic effects, this assumption is not valid.

Approximate large-sample expectation and bias of heri-
tabilities for parametric values were computed as approximate
expectation (E) and bias (B) of ratios of variance components:
E(X) E(X){1+ V(Y) CXY)

Y/TEWL T B® EXEM)

for ' Y>0

! SAS® is the registered trademark of SAS Institute Inc.,
Cary, NC, USA

and
B(x)_E(x) EX)_EX[ V) CXKY)

Y/ T\Y/ E(Y) E(Y)|EX(Y) EX)E(Y)
where X and Y are random variables (e.g, X=44% and
Y=6%) with expectations E(X) and E(Y), variances V(X)
and V(Y), and covariance C (X,Y). Large-sample variances
and covariance of heritabilities for parametric values were

computed as approximate variances and covariances of ratios
of variance components:

V(x)_ F2(X) [V(X) .

V(YY) 2C(X,Y)]

Y/ EBE(Y) [E2(X) EX(Y) E(X)E(Y)
and
(U X)_E(U)E(X) C(U,X) C(V.X)
_V7—HWHﬂEWWMfEME@)
CU,Y) C(V.Y)
" E(U)E(Y) mwmny

where U, V, X and Y are random variables (Pearson 1897).

Maximum likelihood estimates of variance components
were computed for each combination, except for h? = 0.4 and
N =600 because of expense, using the method of Hemmerle
and Hartley (1973) as described by SAS. Initial estimates of
the components were computed using MIVQUE(0). The
procedure iterated until the change in the log-likelihood
objective function was less than 1 x 1073,

The mean, sampling variance and mean square error of
100 replicate variance components and heritabilities were
computed for Method 1 and ML estimates. Mean square error
(MSE) combines the effects of bias and sampling variance (see
Kendall and Stuart 1979). For example, for the sire compo-
nent of variance,

MSE (6%) = E (63 — 08)> = V(63) + B*(63)

which is estimated as
~ 100
MSE (39) = . (6§~ 0)/100,

i=1
where 3 = 0.05 when h? = 0.2 or 6§ = 0.10 when h? = 0.4.

Results and discussion

Coefficients for variance components and CV’s of dam
families and of sire families appear in Table 2. CV’s
for sire- and dam-family sizes did not always increase
together. Expectation and variance of variance compo-
nents estimated by Method 1 (Table 3), showed that
variances were larger for the smaller sample size and
generally smaller for the higher heritability. Data
imbalance did not affect accuracy of the estimates of
variance components (as expected, Method 1 yields
unbiased estimates); however, precision of the esti-
mates generally decreased with increasing imbalance.
Variances of sire and of dam components increased
with increasing imbalance; this was more so for the
smaller sample size and higher heritability.
Approximate bias of heritabilities (Table 4), based
on Method 1 estimates of variance components,
showed that bias was larger for smaller sample size and
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Table 2. Coefficients for variance components (k;, k, and kj)

and coefficients of variation for dam-family sizes, CV (nij),

and sire-family sizes, CV (n;), ranked by CV (n;;) within com-
bination

P N s n k ky ks CV(n;) CV(n;)

02 120 10 6 6 . 6 12 0 0
568 627 1190 29.13 37.07
513  6.84 1196 1884 43.26
515 679 11.88 3216 50.15

600 30 10 10 10 20 0 0
9.68 1031 1998 1737 24.63
9.60 10.39 1997 20.38 28.34
943 1056 1997 2021 30.81

04 120 15 4 4 4 8 0 0
370 428 796 2631 37.72
348 449 795 3062 48.69
332 466 796 2874 50.86

600 75 4 4 4 8 0 0
354 446 799 3370 47.86
350 449 799 3547 51.24
348 451 798 3993 53.88

Table 3. Expectation (E) and variance (V) for variance com-
ponents, based on Method 1 estimates of variance compo-
nents, ranked by CV (n;;) within combination

Tabled. Approximate bias (B) for heritabilities, based on
Method | estimates of variance components, ranked by
CV(n;;) within combination

h N CV(m)  B(hY) B (h3) B(h3.p)
0.2 i20 0 —0.0084 ~—0.0034 —0.0058
37.07 —0.0090 —0.0034 —0.0062

43.26 —0.0090 ~—0.0033 - 0.0062

50.15 —0.0094 ~—0.0034 —0.0064

600 0 —-0.0019 —0.0008 —0.0014

24.63 —0.0020 —0.0008 —0.0014

28.34 —0.0020 —0.0008 —0.0014

30.81 —0.0020 -—0.0008 -0.0014

0.4 120 0 ~0.0157 -0.0054 —0.0106
3772 —0.0170 —0.0054 —0.0112

48.69 —0.0178 —0.0054 —0.0112

50.86 -0.0180 —0.0053 —0.0112

600 0 —0.0028 —0.0011 —0.0020

47.86 -0.0032 —0.0011 —0.0021

51.24 —0.0032 —-0.0011 —0.0022

53.88 —0.0033 —0.0011 —0.0022

Table 5. Approximate variances and covariance for heri-
tabilities, based on Method 1 estimates of variance compo-
nents, ranked by CV (n;;) within combination

h2 N CV(ny) E() V(6 E@R) V@) E(@D V(e W N OV V(D) V(Y V(B.p) C(R3.A3)
(x 100) 02 120 0 01079 0.1331 00267 —0.0671

02 120 0 5 070 5 084 9  1.62 3707 0.1177 0.1456 00270 —0.0769
3707 5 076 5 092 90 162 4326 0.1337 0.1709 0.0274 —0.0976

43% 5 08 S 108 90  1.62 50.15 0.1347 0.1704 00277 —0.0971

5015 S 087 5 1.08 90  1.62 600 0 0.0202 00209 0.0047 —0.0111

600 0 5 013 S 014 90 030 2463 0.0211 00219 00048 —0.0120
2463 5 014 S5 014 90 030 2834 00214 0.0222 00048 —0.0122

2834 5 014 5 014 9 030 30.81 00218 0.0228 00048 —0.0127

08 5 014 5 014 90  0.30 04 120 0 0.1751 0.1987 0.0396 —0.1076

04 120 0 10 119 10 129 8 142 3772 0.1957 02244 00407 —0.1286
3772 10 133 10 145 80  1.42 4869 02119 0.2456 0.0413 = 0.1461

4869 10 143 10 1.58 80 1.42 50.86  0.2253 0.2651 0.0414 —0.1624

508 10 152 10 170 80 142 600 0 00338 0.0397 00077 —0.0214

600 0 10 023 10 02 80 028 4786 0.0404 00482 00080 —0.0283
478 10 027 10 031 80 028 5124 00411 0.0490 00080  —0.0290

S124 10 027 10 032 80 028 5388 00416 0.0495 00081 —0.0294

53.88 10 0.28 10 032 80 0.28

for higher heritability. With increasing imbalance, bias
increased for heritability estimated from the sire com-
ponent and from sire-plus-dam components of variance,
more so for the smaller sample size; bias did not

change for heritability estimated from the dam com-

ponent. Approximate variances and covariance of heri-
tabilities (Table 5), based on Method 1 estimation,
were larger for smaller sample size and for higher heri-
tability, and increased with increasing imbalance
(more so for the higher heritability).

Among the 100 simulated replicates of each com-
bination, the number of negative estimates of sire and
dam variance components from balanced data de-
creased with increasing heritability and sample size
(Table 6). None was significantly different from expec-
tation. There was some trend towards increased num-
ber of negative estimates with increasing data im-
balance, consistent with Gill and Jensen (1968). The
number of replicates that failed to converge for maxi-
mum likelihood estimation increased with increasing
imbalance; this was more so for the smaller sample size
and for the lower heritability.
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Table 6. Number of negative estimates for sire (03) and dam
(64) variance components by Method 1, and number of
replicates that failed to converge by maximum likelihood
among 100 replicates

h? N CV(n;) Method 1 Maximum
EE— likelihood
& 4

0.2 120 0 24 31 5

37.07 22 26 9

43.06 20 40 15

50.15 39 39 16

600 0 8 8 0

24.63 2 7 0

28.34 i3 6 0

30.81 7 7 0

0.4 120 0 16 18 2

37.72 16 15 4

48.69 17 26 2

50.86 16 27 3

600 0 1 1 -

47.86 1 5 -

51.24 4 1 -

53.88 5 4 -

Means of replicate variance components (Table 7),
estimated by Method 1 and ML (when converged),
indicated average estimates of variance components
generally were close to parameter values (Table 3).
There did not appear to be a trend in means of
variance components associated with data imbalance
when they were estimated by ML; Method 1 is known
to be unbiased (Henderson 1953). Variances of repli-
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Table 7. Means of replicate variance components estimated
by Method 1 and maximum likelihood, ranked by CV(n;)
within combination

h? N CV(n;;) Method 1 Maximum likelihood
8 6p o & 8y G
_  (x100)

0.2 120 0 5.58 493 89.63 5.03 548 88.80

37.07 5.19 696 89.76 560 7.13 88.10
43.06 643 358 89.24 573 5.08 87.81
50.15 382 584 90.55 S5.11 6.75 8791

600 0 449 503 89.64 427 493 89.59
24.63 499 546 89.21 4.61 547 89.20
28.34 463 567 8950 451 541 89.50
30.81 476 520 89.23 441 527 89.20

04 120 0 10.19 9.66 78.00 9.35 9.40 77.60
3772 1148 11.04 7848 10.90 10.54 78.44
4869 10.23 8.82 80.22 8.83 10.62 78.98
50.86 1043 872 78.87 1003 9.87 77.63

600 0 10.37 10.03 80.06 — - -
47.86 8.80 11.13 79.80 — - -
51.24 1035 9.13 80.71 - - -
53.88 1121 876 79.75 — - -

cate variance components estimated by Method 1
(Table 8) followed patterns similar to their parameter
values (Table 3). Variances tended to increase with
increasing imbalance; this was less so when compo-
nents of variance were estimated by ML or for the
larger sample size. Estimated mean square errors
(I\7[§E) for variance components (Table 9) were smaller
for ML than for Method 1 estimation and smaller for

Table 8. Variances of replicate variance components estimated by Method 1 and maximum likeli-

hood, ranked by CV (n;;) within combination

h? N CV(n;;) Method 1 Maximum likelihood
Vg VEh)  Ved Ved Vs VD
(x100)
0.2 120 0 0.59 0.96 1.96 0.33 0.52 1.80
37.07 0.74 i.17 1.36 0.48 0.75 1.15
43.06 0.82 0.95 1.32 0.31 0.28 1.24
50.15 1.01 1.27 1.85 0.39 0.72 1.58
600 0 0.13 0.18 0.27 0.09 0.14 0.27
24.63 0.10 0.10 0.22 0.10 0.10 0.22
28.34 0.17 0.18 0.34 0.13 0.15 0.34
30.81 0.13 0.17 0.25 0.11 0.14 0.24
04 120 0 1.24 1.04 1.75 0.82 0.70 1.71
3772 1.68 1.40 1.18 0.93 0.82 1.07
48.69 1.06 1.48 0.92 0.65 0.85 0.90
50.86 1.45 1.98 1.03 0.89 1.42 0.92
600 0 0.21 0.22 0.28 — — -
47.86 0.22 0.36 0.22 — - -
51.24 0.30 0.32 0.22 — - -

53.88 0.30 0.26 0.25
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AN
Table 9. Estimated mean square error (MSE) for variance components estimated by Method 1 and maximum likelihood, ranked

by CV (n;;) within combination

h? N CV (ny)) Method 1 Maximum likelihood
PN ~ ~ oS PN A
MSE (63) MSE (3) MSE (63) MSE (63) MSE (63) MSE (53
(x 100)

0.2 120 0 0.59 0.95 1.94 0.33 0.52 1.80
37.07 0.74 1.20 1.35 0.48 0.78 1.18
43.06 0.83 0.96 1.31 0.32 0.28 1.28
50.15 1.01 1.26 1.84 0.39 0.74 1.61
600 0 0.13 0.18 0.27 0.10 0.14 0.27
24.63 0.10 0.10 0.23 0.10 0.10 0.23
28.34 0.17 0.19 0.34 0.13 0.15 0.34
30.81 0.12 0.17 0.25 0.11 0.13 0.24
04 120 0 1.23 1.03 1.78 0.81 0.70 1.75
37.72 1.68 1.40 1.19 0.93 0.81 1.08
48.69 1.05 1.47 0.91 0.66 0.84 0.90
50.86 1.44 1.98 1.03 0.88 1.40 0.96

600 0 0.21 0.22 0.28 - - -

47.86 0.28 0.37 0.22 - - -

51.24 0.30 0.32 0.22 - - -

53.88 0.31 0.28" 0.25 - - -

Table 10. Means of replicate heritabilities, estimated by Method 1 and maximum likelihood variance components, ranked by

CV(n;;) within combination

h? N CV (n;) Method 1 Maximum likelihood
h3 5 g, p h3 hj LEFEY
0.2 120 0 0.2147 0.1974 0.2060 0.1974 0.2203 0.2089
37.07 0.1968 0.2667 0.2318 0.2160 0.2721 0.2440
43.06 0.2477 0.1437 0.1957 0.2272 0.2039 0.2155
50.15 0.1419 0.2204 0.1812 0.1992 0.2535 0.2263
600 0 0.1802 0.2005 0.1904 0.1720 0.1970 0.1845
24.63 0.1990 0.2189 0.2089 0.1841 0.2202 0.2022
28.34 0.1842 0.2264 0.2053 0.1803 0.2168 0.1985
30.81 0.1898 0.2079 0.1989 0.1766 0.2113 0.1939
0.4 120 0 0.3961 0.3994 0.3978 0.3740 0.3910 0.3825
37.72 0.4292 0.4354 0.4323 0.4247 0.4111 0.4179
48.69 0.4007 0.3395 0.3701 0.3467 0.4206 0.3836
50.86 0.4151 0.3447 0.3799 0.3988 0.3832 0.3910
600 0 0.4108 0.3959 0.4034 - - -
47.86 0.3508 0.4439 0.3974 -~ - -
51.24 0.4104 0.3621 0.3862 - - -
53.88 0.4436 0.3527 0.3981 - - -

the larger sample siz/e< but they were larger for the
higher heritability. MSE increased generaily with in-
creasing imbalance for components of variance for sire
and for dam, especially for the smaller sample size
with Method 1.

For Method 1 and for ML estimation, the effect of
data imbalance on MSE was similar to the effect of
imbalance on estimated variances. For Method 1
estimation, mean square error is expected to be equal

to the variance because variance components estimated
by Method 1 are unbiased. For ML estimation, mean
square error is expected to be larger than the variance
because variance components estimated by ML are
biased; however, MSE of variance component esti-
mates (Table 9) were close to (sometimes even smaller
than) their estimated variances (Table 8), more so for
sire and fo/r\ dam components of variance. This relation
between MSE and estimated variance indicates bias in
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Table 11. Variances and covariance of replicate heritabilities estimated by Method 1 and maximum likelihood variance
components, ranked by CV (n;;) within combination

h? N CV(n;)) Method 1 Maximum likelihood
VE) V@B V(Rkp) CEEBR)  VAY) V@A) V(hE.p) C(RS.AY)
0.2 120 0 0.0879  0.1433  0.0291 —0.0574 0.0468  0.0745  0.0207 - 0.0192
37.07 0.1061 0.1619 0.0280 - 0.0779 0.0608 0.0936 0.0267 —0.0237
43.06 0.128¢  0.1603 0.0271 —0.0905 0.0473 0.0436 0.0193 — 0.0068
50.15 0.1422  0.1847 0.0354  —0.0927 0.0544  0.0914  0.0315 —0.0099
600 0 0.0200 0.0274  0.0050 —0.0138 0.0146  0.0212  0.0048 —0.0083
24.63 0.0146  0.0164  0.0037 —0.0081 0.0149  0.0159 0.0036 —0.0082
28.34 0.0261 0.0294  0.0056 —0.0165 0.0202 0.0225 0.0054 —0.0105
30.81 0.0193 0.0268 0.0053 -0.0124 0.0168  0.0214 0.0049 —0.0093
0.4 120 -0 0.1741 0.1743 0.0365 —0.1012 0.1112  0.1155 0.0331 —0.0472
37.72 0.2382  0.2226 0.0449 — 0.1406 0.1258 0.1125 0.0420 —0.0353
48.69 0.1641  0.2295  0.0373  —0.1223 0.0957 0.1199  0.0293 .—0.0491
50.86 0.2145 0.3025 0.0415 —0.1755 0.1145 0.1621 0.0469 —0.0446
600 0 0.0296  0.0318  0.0085 —0.0137 - - - -
47.86 0.0408 0.0558 0.0080 —0.0324 - - - -
51.24 0.0447 0.0475 0.0081 - 0.0300 - - - -
53.88 0.0413 0.0434 0.0083 —0.0258 - - - -

Table 12. Estimated mean square error (1\7I§E) for heritabilities, estimated by Method 1 and maximum likelihood variance com-
ponents, ranked by CV (n;;) within combination

h? N CV(n,) Method 1 Maximum likelihood
MSE (63 MSE(83) MSE(A3,p) MSE(RY) MSE(RZ) MSE (f3.p)
0.2 120 0 0.0872 0.1418 0.0288 0.0463 0.0741 0.0206
37.07 0.1504 0.1647 0.0288 0.0603 0.0978 0.0284
43.06 0.1299 0.1619 0.0268 0.0475 0.0432 0.0194
50.15 0.1441 0.1833 0.0354 0.0537 0.0931 0.0318
600 0 0.0202 0.0271 0.0050 0.0152 0.0210 0.0050
24.63 0.0145 0.0166 0.0038 0.0150 0.0162 0.0036
28.34 0.0260 0.0288 0.0056 0.0204 0.0225 0.0054
30.81 0.0192 0.0266 0.0052 0.0172 0.0213 0.0049
0.4 120 0 0.1724 0.1726 0.0362 0.1108 0.1144 0.0330
37.72 0.2367 0.2216 0.0455 0.1251 0.1115 0.0418
48.69 0.1625 0.2309 0.0378 0.0976 0.1191 0.0293
50.86 0.2126 0.3026 0.0415 0.1133 0.1607 0.0465
600 0 0.0294 0.0315 0.0084 - - -
47.86 0.0428 0.0572 0.0079 — - -
51.24 0.0443 0.0485 0.0082 - - -
53.88 0.0428 0.0452 0.0082 - - -

ML estimates of variance component is negligible, generally were close to parameter values (Table 5).

perhaps because there is only one degree of freedom
for fixed effects.

Means of replicate heritabilities (Table 10), esti-
mated by Method 1 and ML variance components,
indicated average estimates of heritabilities generally
were close to parameter values, especially for h3,p.
Data imbalance did not appear to affect bias. Vari-
ances and covariances of replicate heritabilities (Table
11), estimated by Method 1 variance components,

Variances were smaller for ML estimation, and larger
for smaller sample size and for higher heritability.
Effect of imbalance on variance of heritability was
smaller for ML than for Mcthod 1 estimation, and was
smaller for h3. p than for hd or h3.

MSE for heritabilities (Table 12) generally were
smaller for ML than for Method 1 estimation and
smaller for h.p than for h& or h3. MSE were larger
generally for smaller sample size and for higher heri-
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tability. MSE generally increased with increasing im-
balance, for Method 1 more so than for ML estimation
and for A} and h3 more so than for h%,p. As with
variance components, MSE and variances of heritabili-
ties were close indicating that for Method 1 and ML
estimation bias is negligible.

For the design and model used in this study, bias in
heritability based on Method 1 and ML estimates of
variance components is negligible. Mean square error
for heritability based on estimates of sire-plus-dam
variance components appears to be less sensitive to
data imbalance than heritability based on estimates of
sire or dam variance components, especially when
using Method 1 estimation. Estimation of heritability
from sire-plus-dam components is insensitive to differ-
ences in data imbalance, especially for the larger
sample size.
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